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J .  Phys.: Condens. Matter l(1989) 8453-8469. Printed in the UK 

Theory for detection of 2~ and ID plasmon dispersion 
relations by ricochet electron energy loss spectra 

P Longei and S M Base$ 
iInstitut de Physique, B5, UniversitC de Liege, Sart-Tilman, B-4000 Likge. Belgium 
f Department of Physics and Atmospheric Science, Drexel University, Philadelphia, 
P A  19104, USA 

Received 6 December 1988 

Abstract. When a beam of electrons is incident quasiparallel on the surface of a metal, on a 
two-dimensional electron gas, or on the axis of a one-dimensional electron gas, these 
electrons have a high probability of undergoing a ricochet scattering with excitation of a 
plasmon. The scattering cross section peaks along critical directions of emergence, which 
depend on the energy E~ of the scattered electrons. E,xperimental determination of these 
directions as a function of E~ can yield direct information on the plasmon dispersion relation. 
Numerical calculations are presented for ricochet scattering on the surface of aluminum, an 
accumulation layer on ZnO and a one-dimensional conductor. 

1. Introduction 

In a recent theoretical paper (Longe and Bose 1986) we proposed a photoemission 
experiment which could yield the values of the parameters ( o s ( 0 ) ,  p D  and n)  of the 
surface plasmon dispersion relation ws(q )  = o,(O) + P D q "  of a metal. We have shown 
that the photoelectrons emitted along the metal surface from atoms located at a small 
distance outside the surface have a high probability to ricochet with the excitation of a 
surface plasmon if the angle of emergence a is less than a critical angle aM(sk) ,  where 
&k = k2/2m is the energy of the outgoing electron. Moreover, the lineshape Z(sk, a) of 
the surface plasmon satellite has a peak at a =  aM(sK) .  By locating this peak one 
determines the function aM(sk)  which yields direct information on the form and para- 
meters of the above dispersion rule. The proposed experiment, however, presents two 
difficulties. First, the production rate of the photoelectrons is weak in the direction of 
the metal surface when emitted so close to the surface, and second, the spectral resolution 
of the photoelectrons is determined by the linewidth of the ionised core level. 

In this paper, we propose yet another experiment in which these difficulties can be 
avoided. In this experiment, the photoelectrons are replaced by an external beam of 
monoenergetic electrons which are allowed to be scattered by a sample placed with its 
surface quasiparallel to the beam. We have calculated the scattering cross section for 
ricochet energy losses by surface plasmon production and have shown that such a 
relatively more flexible experiment could yield the same information on the dispersion 
relations of a wider variety of two-dimensional plasmons (Ritchie 1963, Ritchie and 
Marusak 1966, Stern 1967, Ando et a1 1982, Fetter 1973, Vinter 1975, Allen et a1 1977, 
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Goldstein et aZl980, Many et a1 1981, Giuliani and Quinn 1984, Grimes 1978f). This 
type of experiment can even be extended to one-dimensional plasmons, such as those 
propagating in chains of molecules. 

In these experiments, the only input data are the energy E,, = p2/2m of the incoming 
electron beam and the small angle 0 it makes with the surface of the sample (two- 
dimensional ( 2 ~ )  electron gas), or the axis of the chain (one-dimensional (ID) electron 
gas). In this latter case the experiment can be performed using a system of parallel chains 
of molecules situated in a plane, the projection of momentum p on the plane being 
parallel to the axis of the chains. The chains will be assumed to be sufficiently segregated 
as to produce only a weak overlap between the electron wavefunctions of the different 
chains. 

In other words only two components p L  and pil of p (parallel and perpendicular to 
the sample surface, respectively) are given and chosen such that pl/p = 8 e 1. One 
measures the angular distribution of the scattered electrons, i.e. the differential cross 
section ( T ( E ~ ,  a, p)  where &k = k2/2m is the outgoing energy, and a and p are two small 
angles giving the direction of the outgoing beam (vector k ) .  Copolar angle a is measured 
in the plane ( p , p L )  perpendicular to the sample surface and azimuthal angle p is 
measured along this surface. The scattering first satisfies the energy conservation 

p 2  = k 2  -k 2moD(q) (1) 
where o D ( q )  is the energy or frequency (ti = 1) of a D-dimensional plasmon of momen- 
tum q.  We must also have momentum conservation 

PI1 = kll + 4. ( 2 )  
This vector equation has the dimension D of q (or of the plasmon). These two conditions 
prescribe geometric conditions to the experiments such that the relevant parameters are 
defined in rather narrow ranges. Condition (1) describes the conservation of energy 
before and after the interaction of the electron with the plasmon field, a condition which 
does not have to be strictly satisfied as long as the duration of this interaction is short. 
This is the case in the usual EELS experiments where the z~-plasmon energy losses can 
indeed be observed simply because of the quantum character of the process. What we 
propose here is an experiment where the geometric situation is such that condition (1) 
is strictly satisfied, together with (2), as it should be in a classical system. In such a case, 
we will see that the differential cross section u ( E ~ ,  a, p) presents a sharp peak when the 
values of angles 0, a and /3 are small. The detection of this peak as a function of a, or of 
p, and of the outgoing energy &k could yield direct information on the parameters 
defining the plasmon dispersion relation, e.g. wD(q) = ~ ~ ( 0 )  + pDqn. It is the relation 
between the intensity and the position of the peak of ( T ( E ~ ,  a, p) and the parameters of 
the dispersion relation (here oD(0), pD and n) that we intend to discuss in the present 
paper. 

In 0 2 we present a calculation of the cross section which is valid for any dimensionality 
of the plasmon. Such a general presentation is interesting for it emphasises the relation 
between the scattering potential of the plasmon field acting on an external electron, and 
the dynamic properties of the plasmon inside a D-dimensional electron gas. In § 3, we 
discuss the explicit form of ( T ( E ~ ,  a, p)  and the geometric requirements prescribed by 
the conservation laws (1) and ( 2 ) .  In 0 4 we present an explicit calculation of (T for various 
geometries and emphasise the relation between (T and the parameters of wD(q). 

t Grimes (1978) concerns electrons in surface states on liquid helium. 
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2. Plasmon scattering cross section 

The differential cross section can be written in the general form 

o ( k )  o(Ek , w, p)  = S 2 - I  2 a ( E p  - E k  - @D(q) )  I f q ( i )  1 (3) 
1 

where 52 is the D-dimensional 'volume' occupied by the plasmon modes (i.e. the volume, 
area or length of the sample containing the D-dimensional electron gas) and where 
f q ( i )  is the Born scattering amplitude which depends on direction I, the wavefunction 
of the scattered electron being e@x + (eik'/r)fq(k). One has 

Note that the Born approximation based on plane waves is reasonable as we are dealing 
with high-energy electrons. The deviation from the plane-wave behaviour due to inter- 
action energies is minimal. In fact, our previous calculations of photoemission spectra 
of metals (Bose et a1 1981,1983), with and without the plane-wave approximation, show 
that the higher-energy electrons can indeed be treated as plane waves. The problem now 
consists of determining the scattering potential U,@) of the plasmon field in (4). By 
symmetry this potential can be written as 

Here and below symbols 1 and I /  denote the vector components respectively per- 
pendicular and parallel to 'volume' S2 (for the plasmon q1 = 0, hence q = 411). The step 
function 0 means that the position vector XI/ varies only inside the 'volume' 52 of the 
sample. Note that for a three-dimensional sample (bulk) which we will also consider for 
the sake of generality, one has x, = 0, and xil = x. 

U,(x )  = e-'q'XllU(q,xl)O(Ax~i €522). ( 5 )  

From (3), (4) and ( 5 )  one obtains 

o(k)  = 52(m/2JC)*6(Ep - E k  - W D ( q ) )  11 d"'x1 e-'(kl"''xl U(q,  X,) l 2  (6) 

where q = kll - pil is implicitly assumed. 

has been derived in the appendix as 

where u(q, x, ) is the Coulomb potential and where uo(q)  = u(q ,  0). We will now proceed 
to the calculation of the differential scattering cross section for the three cases D = 3 , 2  
and 1. 

To calculate (6) for various geometries we need an explicit form of U(q,  x i )  which 

U(q,  x1) = u(q, x1 )[(jJD(d/2uO(q)l2 (7) 

2.1. Three-dimensional gas 

The case D = 3 is a well known situation which we present here for the sake of com- 
pleteness in our survey of the problem. The calculation is straightforward. Since x11 = x, 
u(q, xl) reduces to u(q)  = uo(q)  = 4ne2/q2, and from (6) and (7) one has 

d E k ,  i )  = n(m/2n>2[03(q)u(q)/2]a(Ep - & k  - @3(q)) 
with q = p - k.  The total cross section 

Otot = j d E k j d * k o ( E k , k ) =  I d 3 k 4 k ) / m k  

can be calculated immediately for a dispersionless plasmon ( 0 3  = up) assuming 
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q < qc e p .  One obtains 

which is the well known electron (inverse) mean-free path for bulk plasmon excitations. 
In this three-dimensional situation, the external electron penetrates into the bulk elec- 
tron gas and undergoes multiple scattering due to electron-hole excitations. This makes 
the measurement of the delicate angular dependence of c r ( & k ,  k )  practically impossible, 
contrary to the D = 2 and D = 1 cases, which are the main topics of this paper. 

2.2. Two-dimensional gas (and also surface excitation of three-dimensional gas) 

Since D = 2 ,  let us write = ( x ,  y ) ,  x, = (2) and q = (qx ,  4)). This gives 

dq,  e’4z24ne2 
u ( q ,  Xl) = u ( q ,  2) = - 2Xx (4’ + 41) 

= 27iy2 e-qlZl/q 

and uo(q )  = u ( q ,  0 )  = 2ne2/q. Hence from (7)  one has 

U ( q ,  t) = ( ~ ~ ( q ) n e ~ / q ) ~ ’ ’  e-ql21 

and from (6) we have 

O(&k,  k> = A(m/2n)2d(Ep - € k  - 02(q))02(q>(ne2/q> 

dzO(z) exp[-i(k, - p , ) z  - qlzl]  * li: 
=A(m/2n)2a(&p - & k  - W2(q))[ne2w2(p)/q(p - k)21  (8) 

with q = ki, - pll and with A (area) standing for Q. Note that in (8) a step function O(z )  
has been introduced to take into account the fact that the incident electron is not 
supposed to enter the sample. If it penetrates into the sample (z < 0 )  it will undergo 
multiple scatterings and will not be properly detected, a situation similar to that encoun- 
tered above for the bulk case ( D  = 3 ) .  

2.3. One-dimensional case 

Here we assume XIJ = (t), xL = ( x ,  y )  and q = (4 , ) .  This gives 

z dZe-’4zze2 
2 112 4 4 ,  XL 1 = u ( q ,  , P )  = 1 

--m (P’ + z ) 

= 2e2Ko(4P) 

where p = / x L  1 ,  q = / q 2  I and where KO is the modified Bessel function of order zero. 
Hence one has 

uo(q2 1 = u(q,,O) = 2e2Ko(0) 

which diverges! To avoid this divergence one has to use the fact that p is not strictly zero 
inside the one-dimensional sample (chain) and is at least of the order of the radius of 
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the sample or equivalently of the order a-1 of the transverse part of the electrofi 
wavefunction. Since K,(x) - -ln(xeY/2) forx 1 ( y  is the Euler constant), we can write 

uo(q,) = 2e2 ln(a/q). 

Wq, P )  = [e2w,(q)/ln(a/q)I”*~n(qp) 

Therefore (7) becomes 

and from ( 6 )  one has 

O ( & k ,  i> = L(m/2n)26(Ep - &k - 01(4))[e2Wl(q)/1n(a/q)l 

with q = 1 k,  - p, I and L (length) standing for Q. The integral in the above expression 
can be performed exactly using the identity J; dppK,(qp)J,(kp) = 1/(q2 + k 2 ) .  One 
obtains 

3. Angular dependence of the scattered beam 

As indicated in the Introduction, the differential cross sections (8) and (9) present a 
peak (&function) when the following two conditions are satisfied: 

p2 - k2 - v ( q )  = 0 (10) 

and 

For notational simplicity we have written v(q) = 2mo,(q). At this time we proceed to 
calculate the explicit angular dependence of the scattering cross sections for both two- 
and one-dimensional cases. 

3.1. Two-dimensional case 

In the D = 2 (surface plasmon) case, o ( E ~ ,  a, p)  is given by (8). Once the magnitudes of 
p11, pL and k (or equivalently 8, and E ~ )  are fixed the magnitude of q is defined by (10) 
and, as shown in figure 1, the vector k has to be on the intersection of a sphere of radius 
k and a thin circular cylinder of radius q ,  with its axis perpendicular to the sample surface 
and located at a point defined byp11. Because of the ricochet condition required by the 
denominator of (8), lp - kl as well as q ,  and hence IpI - k,  1 ,  are small compared t o p  
and k.  In other words, the relevant part of the intersection corresponds to only that part 
which belongs to small scattering angles a and p. A look at figures 1 and 2 shows that 
for these small scattering angles, the intersection can be approximated by an ellipse or 
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Figure 1. This figure shows the geometry that the vectorsp, k and q must satisfy (excitation 
of a two-dimensional plasmon). The head of vector k lies along the intersection of a sphere 
of radius k and a circular cylinder of radius q with its axis through the pointpll. The directions 
of copolar angle cr and azimuthal angle /3 of k are pointed out. (This figure is not to scale.) 

a 

-. * .: p 
* *  *. . . . . . . . .. . .. 17 

( a )  ( b l  i C )  

Figure 2. This figure shows three possible shapes of the intersection, mentioned in figure 1, 
for the various possible values of k ,  pi1 and ko. The intersection represented is found when 
viewed in the direction of the outgoing beam. The appropriate orientation of the detector 
slit to locate PM or crM (open circles) is also indicated. (This figure is not to scale.) 

by two hyperbolae, depending on the sign ofpi, - k. In fact in the (a ,  p)  space shown in 
figure 2, the intersection can be described by a quadratic expression 

k2 = k i  + Pa2 + Qp2 (12) 

which must be equivalent to (10) with q given by (ll), i.e. by 

q 2 = ( k i l  - k c o s a c o ~ P ) ~  + ( - k c o ~ a s i n @ ) ~  
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Momentum ko in (12) and associated qo are obtained by solving the set of equations (10) 
and (13) for a = P = 0, which are 

p2 - k;  - v (q0)  = 0 (14a) 

Expression (12)  is then obtained by expanding (10) for small k2 - k;  and using q defined 
by (13).  One finds 

with 

R = 2qo l (kov’(q0 1) - (PI1 - ko Ilk20 

= 2qo l (Pv’(q0 1) (16)  

and v’ (q)  = d v(q)/dq. 
From (12)  and (15a),  it is clear that the nature of the intersection depends on the 

relative magnitude of ko,  k and pll, For k < ko < p11 there is no intersection; for k and 
plI > ko the relevant part of the intersection is an ellipse (figure 2(a ) ) ;  forpi1 < ko < k and 
for k and pll < ko,  one has two types of hyperbolae (bold lines in figure 2(b ,  e ) ) .  The 
radius of the cylinder being much smaller than that of the sphere, the intersections are 
in fact much more elongated than depicted in figure 2. 

By using (12)  and related expansions, the differential cross section (8) can then be 
written in the form 

a(k ,  a, @ ) / A  = [S /D(a ,  P)]S(k2  - k ;  - P a 2  - Q P 2 )  

S = m 2 e 2  v(qo ) l (4nP2qo 1 

(17)  

with 

(18)  

and 

This denominator D ( a ,  p) is small due to the ricochet conditions. 
From an observational viewpoint it is interesting to determine the extremal angles 

a = aM and /3 = Ph? indicated by open circles in figure 2. To do this the outgoing beam 
could be picked up by a narrow slit detector placed parallel to the a (or /3) axis. The slit 
can be moved in the /3 (or a) direction. In such a scanning a sharp drop in the measured 
intensity will occur for a = aM (or /3 = PM), i.e. the extremal angular position (open 
circles). In the situation depicted by figure 2(b )  the slit, represented by a double line, is 
parallel to the a axis and a /3 scanning is performed. Conversely in figure 2(c) ,  the slit is 
parallel to the /3 axis to perform an a-scanning. In figure 2(a) (ellipse) both techniques 
could be used. 

First let us consider the case where the slit is parallel to the a axis. The outgoing 
beam is collected for all values of a between 0 and A a  ( A a  is the angular length of the 
slit). Note that the negative values of a are not detected here since they correspond to 
a beam having penetrated into the sample. In such a device one measures 
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A - ' a ( k , p )  = A - '  lo d a  a(k ,  a,/3) 
Am 

= S @ ( d ) / ( 2 D ( d d ,  /3) 1 PI dd) 

with d = (k2  - kg - QD2)/P.  As indicated before this cross section presents a sharp 
peak for d = 0 above (or below) which it cancels. Equation d = 0 is equivalent to 

This expression of PM as a function of the outgoing energy &k is important, since its 
experimental determination gives direct information on the plasmon dispersion relation. 
The first numerical application presented in 8 4 is related to the detection of this PM 
(surface plasmon of metals). 

Next we consider the case of the detector slit parallel to the /3 axis and scanning the 
beam along the a axis. Here all values of /3 between - A b  and A/3 can be collected, A/3 
corresponding to the half-length of the slit. One measures 

AB 
A- 'a (k ,  a) = A - '  d/3 a(k,  a,  /3) i,, 

= SO(%)/ (D(a ,  d%)Qd%) ( 2 2 )  

with 93 = (k2  - ki  - P a 2 ) / Q .  Again this cross section presents a sharp peak for 93 = 0 
followed by a sudden cancellation. This structure corresponds to 

This critical angle when detected as a function of k2 will also give information on 
the plasmon dispersion relation. This a scanning is particularly suitable for the two- 
dimensional 'acoustic' plasmon (see the second application in § 4.2 which concerns the 
plasmons in accumulation layers on ZnO). 

3.2. One-dimensional case 

This situation is in a sense simpler than the above two-dimensional case. Equation (11) 
is replaced by 4, = p ,  - k, or 

4 = IPZ - kz I 
where p z  and k,  play the roles of the previousp~~ and k11. Again, once the magnitudes of 
p z , p I  and k (or equivalently 8,  eP and E ~ )  are fixed, vector kcan geometrically be defined 
to be on the interse-ction of two surfaces. But here the thin cylinder of figure 1 is replaced 
by a pair of parallel planes, perpendicular to the chain ( z  axis) and cutting it at points 
k, = p ,  - 4, = p z  - 4 (figure 3(a)) .  

Like the two-dimensional case, we can work in an (a ,  /3) space. Angles a and /3 locate 
the direction of k from the z axis. These angles are measured in two perpendicular planes 
passing by the z axis, the a plane containing vectorp. The second plane (/3 plane) may 
have a physical meaning. If we consider a system of parallel molecular chains, it will be 
the plane containing the chains, or a surface plane if these chains are embedded in a bulk 



Plasmon dispersion relations 

I 

F ! p  

I 

k/ 
I 
I ........ 
---- 

by ricochet energy loss 

29 -- 

-8 I c!3 P 

k 

-- 

O P  

8461 

sample. The intersection being obviously circles, its expression in the (a ,  p)  space will 
be given by 

k 2  = k i  + P(a2 + b 2 )  (25) 
an expression which has to be equivalent to (10) with q given by (24) or equivalently by 

q2 = ( p z  - k ) 2  + k(pz - k ) ( a 2  + p 2 )  
(cuand /3 are assumed to be small). Momentum ko in (25), and associated qo, are obtained 
by solving (10) and (24) for a = p = 0:These two equations are 

p2 - k; - v (q0)  = 0 

40 = IPZ - kol. 

(26a) 

(26b) 
Then proceeding to the expansion of (10) for small k2 - k i ,  with qo defined by (24), one 
finds an expression for P which is the same as (1%) (withp, replacingp,,). A glance at 
(25) shows that the intersection (circle) exists as long as P and k - ko have the same sign. 
This means that both k andp, have to be smaller or larger than ko. 

By using (25) and related expansions, the differential cross section (9) takes a form 
similar to (17). One has 

a, P)/L = [ S / ( W ,  p))216(k2 - k;  - P ( a 2  + P2>)  (27) 

(28) 

with D ( a ,  p) defined as in (19) but with S given by 

s = m2e2 4 4 0  >l[P4 W l q o  >I. 
Experimentally, one should determine the extrema1 angles aM and pM which are 

equal, and are represented by open circles in figure 3(b). Angle aM is probably easier to 
measure than pM. The beam is scanned by a slit placed parallel to the sample surface 
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where the one-dimensional chains are surfacing. The scanning is along the a axis and 
one measures 

A@ 
L - ' a ( k ,  a) = L-' d p  a(k ,  a ,  /?) lA@ 

= S@(93)/[D(a, V93)2IPlV%]. (29) 
with 93 = (k' - k i ) / P  - a', As before this cross section has a sharp peak for % = 0 
followed by a cancellation. This structure appears for aM given by the same expression 
as (23). Here again the detection of aM as a function of k' will give direct information 
on the parameters defining the plasmon dispersion relation. In the next section we will 
make a numerical application of this theory assuming an accepted form for the plasmon 
dispersion relation. As input data we will use the parameters already suggested in 
literature for the quasi-one-dimensional conductors. These parameters indicate that ahf 
should be detectable in this case. 

4. Applications to specific physical systems 

Let us write the plasmon dispersion relation in the general form 

as mentioned in the Introduction. Besides the zero momentum plasmon energy v(O), 
the main parameters of (30) are y and n. Our aim is to determine these parameters 
experimentally by ricochet scattering. The differential cross section is given by (20) or 
by (22). The experimental technique consists in collecting the scattered electrons for a 
well defined outgoing energy k2/2m and then detecting the peak by a slit detector in the 
cross section either along the /? or the a direction. This peak appears at /3 = p M ( k 2 )  given 
by (21), or at a = a M ( k 2 )  given by (23). The important point to realise is that pk, or 
ah ,-is proportional to k' - k i  and basic information can be obtained from the slope 

4 4 )  = 4 0 )  + yq" (30) 

A P h / A k 2  = 2qo /p2v ' (qo )  = 2q2-"/nyp2 (31a) 
or 

A a L / A k 2  = ? 2 /pv ' (q0 )  = k 2q'-"/nyp 
which can be obtained from the experimental determination of a2 or p2. Other infor- 
mation comes from the limit p2 + 0 in (21), or a2 + 0 in (23), which, when obtained by 
linear extrapolation of the experimental data, yields 

k ;  = lim k'. (32) 

4 0  = IPll - (P' - v(o))1'21 

R,  = (p' - v(q,))'" 

4 0  = P - PI1 = P02/2 

Parameters n and y are thus obtained from these data, and from these expressions ( 3 1 )  
and (32) where approximate values of qo and ko  can be introduced, namely 

(33) 

(34) 

and 

which are the solutions of (14) after a first-order iteration. Note that for 'acoustic' 
plasmons, where v(0) = 0, (33) has a simpler form 

showing that q,  is very sensitive to the choice of the incidence angle 8. 
(35) 
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0 1 2 3 4 
p (degl 

Figure4. Scattering crosssection o(p, & k )  plotted as afunctionofpfor fourvaluesofoutgoing 
energy ck. Here surface plasmons are excited on an aluminium sample. The incident electron 
energy is 100 eV with 0 = 2", and the outgoing energy is &k = [88.84 - 1.75(1 - s)] eV. The 
vertical lines correspond to the critical angle phl = 5.36"ds.  The inset shows a plot of 
p& against & k  - E ~ , , ,  with s values indicated by dots. Note that the slope of this line 
gives information on p. 

4.1. Surface plasmon on a metal sample 

As a first application we consider the excitation of a surface plasmon on the surface of 
an aluminum sample. We will present a numerical result by assuming a linear dispersion 
rule ( n  = 1) calculated in the hydrodynamical model (Ritchie 1963, Ritchie and Marusak 
1966). 

In this model, the general form (30) becomes v(q)  = 2mw, + pq with w, = o P / d 2  = 
11.16 eV (w, and w,! being the surface and bulk plasmon frequencies, respectively) and 
p = (3/5)1/2kF, i.e. p2/2m = 3 ~ ~ / . 5  = 6.99 eV. Using these numbers and an incident 
beam with an energy cP = p2/2m = 100 eV and an incidence angle 6 = 2", we obtain the 
cross section o ( & k ,  @) from (20) as represented in figure 4. Here we have written the 
outgoing energies in the form 

&k = €edge - - s)pqO /2m 

with &edge = - w, = 88.84 eV, or equivalently 

&k = & k o  + spqO /2m (36) 

where qo and ko are obtained by solving (14). One has &/2m = 0.44 eV and 
&ko = k i / 2 m  = 87.09 eV. This latter quantity being smaller than p i / 2 m  = 99.88 eV, 
we are in the situation depicted by figure 2(b). The four curves of figure 4 correspond 
to s = 0.2, 0.4, 0.6 and 0.8. The related outgoing energies thus differ by a quantity 
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0.2 pq0/2m = 0.35 eV which should be detectable experimentally. From (21) and (36), 
one obtains 

giving the critical angle where the curves of figure 4 are peaking. Using our numbers we 
have PM = 5.36"Vs and from (31a) with n = 1, we obtain 

Aph/AEk = 4mq0 / p p 2  = 16.43 deg2 eV-' 

a slope which appears in the inset of figure 4 and which should be compared with 
experimental data. Such a comparison will give a check of the linearity of the dispersion 
relation (n  = l), as well as of the appropriateness of the p value. A determination of 
c k o ,  and hence us, can also be obtained for Ph?+ 0 as shown in this inset. 

In the problem of the surface plasmons of metals, the P scanning is probably much 
more sensible than the (Y scanning which the authors had suggested in their previous 
paper (Longe and Bose 1986). However, for the next applications (acoustic plasmons), 
the (Y scanning will definitely be preferable. 

4.2. Two-dimensional plasmon in the accumulation layers on ZnO 

As a second application of ricochet scattering of electrons by a two-dimensional plasmon, 
we now consider the accumulation layers (Goldstein et a1 1980, Many et a1 1981). These 
are two-dimensional electron gases (ZDEG) directly accessible to electron scattering 
experiments. Unlike the usual MOS structure (Stern 1967, Ando et a1 1982, Fetter 1973, 
Vinter 1975, Allen et a1 1977, Giuliani and Quinn 19841, they are not covered by 
an oxide layer. The accumulation layers on ZnO are found to be particularly strong 
(Goldstein et a1 1980, Many et a1 1981). 

In the appendix, we have mentioned that the plasmon dispersion relation is given by 
the cancellation of 1 + uoBR in the denominator of propagator (A5) and that BR is 
proportional to w-' for small q .  More precisely in the RPA one has B ,  = -nDq2/mw2,  
an expression valid for an electron gas of dimension D which can be established from 
(A7) (nD is the electron density). Since for a ZDEG one has uo(q)  = 2ne2/q (see 5 2)  one 
finds 

This well known result shows that for a 2DEG one should expect acoustic plasmons with 
a dispersion relation of the form 

v ( q )  = pq1'2. (38) 

Using the above relation with n2  = 2 x l O I 3  cm112, a density currently met in ZnO 
accumulation layers, we can write p = 0.119 ug3l2 where aB is the Bohr radius. An 
appropriate choice for the incident beam is an energy E~ = 400 eV and an incidence 
angle 6' = 4". Introducing these numbers in (14) one finds qo = 0.0120 a i '  (or q2/2m = 
1.96 mev),  u(qo)  = 0.0130 a;' (or w 2 ( q 0 )  = 0.177 e v )  and &ko = (400 - 0.177) e v .  
Energy & k o  is thus larger than p 2 / 2 m  = 398 eV and we have the situation depicted by 11 
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FigureJ. Scattering crosssection a(a, E ~ )  plottedas afunctionof cuforfour valuesofoutgoing 
energy E ~ .  Here two-dimensional plasmons are excited in a 2DEG (accumulation layer on 
ZnO). The incident electron energy is 400 eV with 0 = 4", and the outgoing energy is ek = 
[400 - 0.177(1 + s)] eV. The vertical lines correspond to the critical angle aM = 5 .39"ds .  
The inset plots ah against & k c )  - E ~ ,  with s values indicated by dots. Here again the slope of 
this line gives direct information on p. 

figure 2(c). The related differential cross section u ( E ~ ,  a) computed from (22) is repre- 
sented in figure 5 where we write the outgoing energies in the form 

The four curves of figure 5 correspond to s = 0.2,0.4,0.6 and 0.8.The outgoing energies 
considered differ by a quantity 0.2 oz(qo) = 35.4 meV which is small but should be 
detectable. The peaks occur for critical angles given by 

4 = ( ~ ~ O / P > S  

as shown by (23) and (39).  More explicitly one has aM = 5.39" ds. The inset of figure 6 
depicts the slope 

A a h / A E k  = - 8 m ( d q o ) / p p  = -164.2deg2 eV-' 

given by (31b) with n = f, from which the validity of (38) and the choice of p can be 
checked. Note that the validity of (38) ,  or in other words the value of n = f of the 
exponent can be verified easily by considering the dependence of that slope on qo as 
given by (31b).  For acoustic plasmons qois indeed proportional to the square of incidence 
angle 8 as shown in (35)  and its value can thus be easily modified and controlled. 
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Figure6. Scattering crosssection U(&,  & k )  plottedasafunctionof aforfourvaluesofoutgoing 
energy Here plasmons are excited in a one-dimensional conductor of length L (if one 
considers a set of parallel conductors displayed on a surface, Nis  their density per transverse 
unit length). The incident electron energy is 400 eV with 0 = 4", and the outgoing energy is 

= [40 - 0.419(1 + s)] eV.TheverticallinescorrespondtothecriticalangleaM = 3.77"ds.  

4.3. One-dimensional conductors 

In this last application the one-dimensional plasmon (Williams and Bloch 1974, Apostol 
1975, Campos et a1 1977, Friesen and Bergersen 1980, Kaner and Chebotarev 1985, Das 
1986) is often described by a logarithmic dispersion relation, which is somewhat more 
complicated than (30). However, the ricochet scattering may still be used to obtain its 
parameters. For the present discussion an appropriate model dispersion relation should 
be introduced. Again we refer back to propagator (A5) in the appendix, where this 
relation is obtained from the cancellation of the denominator, i.e. by setting 1 + v~BR = 
0. Again we use the RPA expression BR = -nDqZ/mco2 and the potential u o  = 2e2 
ln(a/q) already presented in § 2. This gives the dispersion relation 

ol(q) = q[2e2nl ~n(a/q) /m] ' /~.  (40) 

. v (4 )  = P d l n  a/q)li2 (41) 

Such a relation has been discussed by many authors. Let us write it in the form 

where in the RPA we have ,u2 = 8nl/aB. The aim of ricochet scattering is to determine 
,u and a in (41). To present a numerical example, let us writet ,u = 1.427 a;' and 

t Referring for instance to the parameters K ,  U and A introduced by Friesen and Bergersen (1980), 
these numbers correspond to the choice K = 1, U = 5 and A = 0.5. These authors define their parameters 
as U = 2/aBkF = 4 /na ,n ,  and A = k , /a ;  K is a dielectric constant. 
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a = 0.8 a i '  and assume an incident beam with an energy ep = 400 eV and an incidence 
angle 8 T= 4". Introducing these values in (14) one finds qo = 0.0104 a i '  (or q2/2m = 
1.46 mev),  v(qo) = 0.0308 a i 2  (or wl(qo)  = 0.419 ev) and & k o  = (400 - 0.419) e v .  
The differential cross section given by (29) can then be computed and is represented in 
figure 6 where the outgoing energies are written in the form 

&k = &p - ( l  -k s)wl(qO) = &ko - swl(qO). (42) 

The four curves of figure 6 correspond tos  = 0.2,0.4,0.6 and 0.8. The outgoing energies 
considered thus differ by 0.2 wl(qo) = 83.9 meV which should also be detectable. The 
peaks occur for critical angles given by 

ail = 2%I/PUa/qo)s (43) 
with L(x)  = In x/(ln x - A), as shown by (23) and (42). More explicitly one has ah? = 
3.77" vs. The inset of figure 6 gives the slope 

A a h / A E k  = -(4m/pp)(ln(a/qo))-*'2~(a/qo) = -33.8 deg2 eV-' 

obtained from (42) and (43). This slope should be determined experimentally to yield 
information on the dispersion rule. Note that as long as a S qo, which is the case in the 
present numerical study, one has L(a/qo) = 1 (here (L(a/qo) =.1.13) and the slope 
Aa&/A&k depends only weakly on qo. This is probably the most interesting feature 
which could be checked by ricochet scattering in this one-dimensional situation. Indeed 
it seems rather difficult to discriminate between the roles played independently by p and 
a in a dispersion relation like (41). However, if ricochet scattering measurements yield 
a slope A a i j / b & k  which appears to be too sensitive to qo (qo is proportional to O 2  as 
shown by (35)), this means that the expression (41) for the dispersion relation has to be 
reconsidered. 
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Appendix 

In this appendix we present the calculation of U(q,  xl) which appears in the expression 
for the scattering cross section given in (6). 

To calculate U(q,  x,) we note that this potential appears in (6) as a factor 

N w  - wo(q))U(q, X21)U(Qt XI11 (Al l  

which is the imaginary part of the effective potential between two charges located at x1 
and x2 outside the electron gas, but interacting uia the electron gas. In the position space, 
this potential is given by 

jd"x;li j d ~ x i l ~ u ( x , ~ l  - ~ ; I / , X ~ ~ ) F ( ~ ; I I  -xill, o)u(x;ll -xl/ l>x11) 

where u(xli, x l )  = u ( x )  = e2/ix/ is the Coulomb potential and F(x;l/ - x;~,, o) is the density 
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Figure 7. Diagram representing the effective potential between two charges located at xi 
and x2 outside the electron gas but interacting uia the electron gas. 

fluctuation propagator inside the electron gas (hence xi1 = xi, = 0). The Fourier trans- 
form of this effective potential (related to the internal coordinates of the electron gas) 
is given by 

u ( q ,  x21 )F(q ,  w)u(q,  x11) (A21 
which is an expression represented by the left-hand side member of the diagrammatic 
equation of figure 7. Since we only consider that part of propagator F which concerns 
the collective plasmon excitation, F has the form 

F(q, = -c(q) / (O - w D ( 4 )  + iA) (A31 

U(q,  XI 1 = u(q,  x1 >(c(q))”2. (A41 

and looking at (Al)  and (A2), we can thus write 

Now the problem consists in determining the amplitude factor C(q) in (A3). Let us 
write F(q,  w) as 

F(q,  0) = B(q9 ”1 + ud”) ,  4) (Aj) 

where B(q, w )  is the irreducible polarisation part of F(q,  w) in the D-dimensional 
electron gas, the electron-electron potential being uo(q) = u(q ,  x i )  with x1 = 0. In the 
diagrams of figure 7, the difference between uo(q) appearing in (A5) and u(q ,x , )  
appearing in (A2) is shown by using a single broken line for uo and a double one for U .  The 
plasmon energy w = wD(q) comes out from (A5) as a solution of 1 + uo(q)BR(q, w )  = 0 
for avanishing BI(q,  w )  (RR and& are the real and the imaginary part of B, respectively.). 
Expanding the denominator of (A5) about w - wD one finds (A3) with 

c(q) = -IBR(q, w)/(uO(q)aBR(q, w > / a w ) l ~ = ~ ~ *  (A6) 

This expression of the amplitude factor C(q) is quite general. For a more explicit 
calculation we can use the RPA where the polarisation part for a D-dimensional electron 
gas is 
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k,  being the radius of a Fermi D-sphere. F'or small values of q it can be shown that the 
real part of this expression is proportional to wP2 yielding BR[dBR/do]-' = - 0 / 2 .  
Hence from (A6) and (A4) one has 

U q ,  XI 1 = 4 q >  X L ) ( ~ D ( q ) / 2 ~ o ( q ) ) 1 ' z  (A8) 

which can be introduced into the expression (6) of the differential cross section. 
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